skip to main content


Search for: All records

Creators/Authors contains: "Russell, James M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. North Atlantic cooling during Heinrich Stadial 1 triggered an east-west precipitation dipole over the tropical Indian Ocean. 
    more » « less
  3. Abstract

    Terrestrial‐marine dust fluxes, pedogenic carbonate δ13C values, and various paleovegetation proxies suggest that Africa experienced gradual cooling and drying across the Pliocene‐Pleistocene (Plio‐Pleistocene) boundary (2.58 million years ago [Ma]). However, the timing, magnitude, resolution, and relative influences of orbitally‐driven changes in high latitude glaciations and low latitude insolation differ by region and proxy. To disentangle these forcings and investigate equatorial eastern African climate across the Plio‐Pleistocene boundary, we generated a high‐resolution (∼3,000‐year) data set of compound‐specificn‐alkane leaf wax δ2H values—a robust proxy for atmospheric circulation and precipitation amount—from the HSPDP‐BTB13‐1A core, which spans a ∼3.3–2.6 Ma sequence in the Baringo‐Tugen Hills‐Barsemoi Basin of central Kenya. In combination with the physical sedimentology, our data indicate that precipitation varied strongly with orbital obliquity, not precession, during the late Pliocene, perhaps imparted by variations in the cross‐equatorial insolation gradient. We also observe a marked shift toward wetter conditions beginning ∼3 Ma that corresponds with global cooling, drying in western Australia, and a steepening of the west‐east zonal Indian Ocean (IO) sea surface temperature (SST) gradient. We propose that northward migration of the Subtropical Front reduced Agulhas current leakage, warming the western IO and causing changes in the IO zonal SST gradient at 3 Ma, a process that has been observed in the latest Pleistocene‐Holocene but not over longer timescales. Thus, the late Cenozoic moisture history of eastern Africa is driven by a complex mixture of low‐latitude insolation, the IO SST gradient, and teleconnections to distal high‐latitude cooling.

     
    more » « less
  4. Abstract Understanding eastern African paleoclimate is critical for contextualizing early human evolution, adaptation, and dispersal, yet Pleistocene climate of this region and its governing mechanisms remain poorly understood due to the lack of long, orbitally-resolved, terrestrial paleoclimate records. Here we present leaf wax hydrogen isotope records of rainfall from paleolake sediment cores from key time windows that resolve long-term trends, variations, and high-latitude effects on tropical African precipitation. Eastern African rainfall was dominantly controlled by variations in low-latitude summer insolation during most of the early and middle Pleistocene, with little evidence that glacial–interglacial cycles impacted rainfall until the late Pleistocene. We observe the influence of high-latitude-driven climate processes emerging from the last interglacial (Marine Isotope Stage 5) to the present, an interval when glacial–interglacial cycles were strong and insolation forcing was weak. Our results demonstrate a variable response of eastern African rainfall to low-latitude insolation forcing and high-latitude-driven climate change, likely related to the relative strengths of these forcings through time and a threshold in monsoon sensitivity. We observe little difference in mean rainfall between the early, middle, and late Pleistocene, which suggests that orbitally-driven climate variations likely played a more significant role than gradual change in the relationship between early humans and their environment. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)